首页> 外文OA文献 >A multivariate zero-inflated logistic model for microbiome relative abundance data
【2h】

A multivariate zero-inflated logistic model for microbiome relative abundance data

机译:微生物组相对的多变量零膨胀逻辑模型   丰富的数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human microbiome plays critical roles in human health and has been linkedto many diseases. While advanced sequencing technologies can characterize thecomposition of the microbiome in unprecedented detail, it remains challengingto disentangle the complex interplay between human microbiome and disease riskfactors due to the complicated nature of microbiome data. Excessive number ofzero values, high dimensionality, the hierarchical phylogenetic tree andcompositional structure are compounded and consequently make existing methodsinadequate to appropriately address these issues. We propose a multivariatetwo-part model, zero-inflated logistic normal (ZILN) model to analyze theassociation of disease risk factors with individual microbial taxa and overallmicrobial community composition. This approach can naturally handle excessivenumbers of zeros and the compositional data structure with the zero part andthe logistic-normal part of the model. For parameter estimation, an estimatingequations approach is employed and enables us to address the complex inter-taxacorrelation structure induced by the hierarchical phylogenetic tree structureand the compositional data structure. This model is able to incorporatestandard regularization approaches to deal with high dimensionality. Simulationshows that our model outperforms existing methods. Performance of our approachis also demonstrated through the application of the model in a real data set.
机译:人类微生物组在人类健康中起着至关重要的作用,并与许多疾病有关。尽管先进的测序技术可以前所未有地详细描述微生物组的组成,但由于微生物组数据的复杂性,难以区分人类微生物组和疾病风险因素之间的复杂相互作用。零值的数量过多,维数高,系统树的层次结构和组成结构复杂,因此使现有方法不足以适当地解决这些问题。我们提出了一个多变量的两部分模型,零膨胀逻辑正态(ZILN)模型来分析疾病危险因素与个体微生物分类群和整体微生物群落组成的关系。这种方法自然可以处理过多的零和具有模型的零部分和逻辑正态部分的组成数据结构。对于参数估计,采用了估计方程方法,它使我们能够解决由分层系统发育树结构和成分数据结构引起的复杂的分类间相关结构。此模型能够合并标准正则化方法以处理高维。仿真表明,我们的模型优于现有方法。通过将模型应用于实际数据集中,也证明了我们方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号